Автоматизированная информационно-справочная система требований пожарной безопасности (в соответствии с нормами строительного проектирования) “Экспертиза” |
ПРИЛОЖЕНИЕ 6
Справочное
ПРИМЕРЫ РАСЧЕТА
1. Рассчитать вероятность возникновения пожара и взрыва в отделении компрессии.
1.1. Данные для расчета
Отделение компрессии этилена расположено в одноэтажном производственном здании размерами в плане 20x12 м и высотой 10 м. Стены здания — кирпичные с ленточным остеклением. Перекрытие — из ребристых железобетонных плит. Освещение цеха — электрическое, отопление — центральное. Цех оборудован аварийной вентиляцией с кратностью воздухообмена (n), равной восьми.
В помещении цеха размещается компрессор, который повышает давление поступающего из магистрального трубопровода этилена с 11 x 105 до 275 x 105 Па. Диаметр трубопроводов с этиленом равен 150 мм, температура этилена достигает 130 оC. Здание имеет молниезащиту типа Б.Нижний концетрационный предел воспламенения этилена (Сн.к.п.в в смеси с воздухом равен 2,75%, поэтому, в соответствии с СНиП II —90- 81: производство по взрывной, взрывопожарной и пожарной опасности относится к категории А, то есть в цехе возможно возникновение как пожара, так и взрыва. По условиям технологического процесса возникновение взрывоопасной концентрации в объеме помещения возможно только в аварийных условиях, поэтому помещение по классификации взрывоопасных зон относится к классу В-1а.
Пожарная опасность отделения компрессии складывается из пожарной опасности компрессорной установки и пожарной опасности помещения. Пожарная опасность компрессора обусловлена опасностью возникновения взрыва этиленовоздушной смеси внутри аппарата.
Пожарная опасность помещения обусловлена опасностью возникновения пожара в цехе, а также опасностью возникновения взрыва этиленовоздушной смеси в объеме цеха при выходе этилена из газовых коммуникаций при аварии.
Возникновение взрыва в компрессоре обусловлено одновременным появлением в цилиндре горючего газа, окислителя и источника зажигания.
По условиям технологического процесса в цилиндре компрессора постоянно обращается этилен, поэтому вероятность появления в компрессоре горючего газа равна единице
Появление окислителя (воздуха) в цилиндре компрессора возможно при заклинивании всасывающего клапана. В этом случае в цилиндре создается разряжение, обуславливающее подсос воздуха через сальниковые уплотнения. Для отключения компрессора при заклинивании всасывающего клапана имеется система контроля давления, которая отключает компрессор через 10 с после заклинивания клапана. Обследование показало, что за год наблюдалось 10 случаев заклинивания клапанов. Тогда вероятность разгерметизации компрессора равна
Анализируемый компрессор в течение года находился в рабочем состоянии 4000 ч, поэтому вероятность его нахождения под разряжением равна
Откуда вероятность подсоса воздуха в компрессор составит значение
Таким образом, вероятность появления a цилиндре компрессора достаточного количества окислителя в соответствии с формулой (44) приложения 3 равна
Откуда вероятность образования горючей среды в цилиндре компреcсора соответствии с формулой (40) приложения а будет равна
Источником зажигания этиленовоздушной смеси в цилиндре компрессора могут быть только искры механического происхождения, возникающие при разрушении узлов и деталей поршневой группы из-за потери прочности материала или при ослаблении болтовых соединений.
Статистические данные показывают, что за анализируемый период времени наблюдался один случай разрушения деталей поршневой группы, в результате чего в цилиндре компрессора в течение 2 мин наблюдалось искрение. Поэтому вероятность появления в цилиндре компрессора фрикционных искр в соответствии с формулами (42 и 47) приложения 3 равна
Оценим энергию искр, возникающих при разрушении деталей поршневой группы компрессора. Зная, что скорость движения этих деталей составляет 20 м
x c-1, а их масса равна 10 кг и более, найдем энергию соударения (Е), Дж, по формулеИзвестно, что фрикционные искры твердых сталей при энергиях соударения порядка 1000 Дж поджигают метановоздушные смеси с минимальной энергией зажигания 0,28 мДж.
Минимальная энергия зажигания этиленовоздушной смеси равна 0,12 мДж, а энергия соударения тел значительно превышает 1000 Дж, следовательно:
Тогда вероятность появления в цилиндре компрессора источника зажигания в соответствии с формулой (46) приложения 3 равна
Таким образом, вероятность взрыва этиленовоздушной смеси внутри компрессора будет равна
Наблюдение за производством показало, что трижды за год (m-3) отмечалась разгерметизация коммуникаций с этиленом и газ выходил в объем помещения. Рассчитаем время образования взрывоопасной концентрации в локальном облаке, занимающем 5% объема цеха.
Режим истечения этилена из трубопровода при разгерметизации фланцевых соединений вычисляют из выражения
где Ратм — атмосферное давление, Па;
Pраб — рабочее давление в трубопроводах с этиленом, Па;
vкр — критическое отношение.
То есть истечение происходит со звуковой скоростью w, равной
Площадь щели F при разгерметизации фланцевого соединения трубопровода диаметром 150мм и толщиной щели 0,5 мм равна
Расход этилена — g через такое отверстие будет равен
Тогда время образования локального взрывоопасного облака, занимающего 5% объема цеха при работе вентиляции, будет равно
Учитывая, что из всей
массы этилена, вышедшего в объем
помещения, только 70% участвуют в образовании
локального взрывоопасного облака, время
образования этого облака и
время его существования после
устранения утечки
этилена будет равно:
Время истечения этилена при имевших место авариях за анализируемый период времени было равно 4,5, 5 и 5,5 мин. Тогда общее время существования взрывоопасного облака, занимающего 5% объема помещения и представляющего опасность при взрыве для целостности строительных конструкций и жизни людей с учетом работы аварийной вентиляции будет равно
Откуда вероятность появления в объеме помещения, достаточного для образования горючей смеси количества этилена, равна
Учитывая, что в объеме помещения постоянно имеется окислитель, получим
Тогда вероятность образования горючей смеси этилена с воздухом в объеме помещения будет равна
Основными источниками зажигания взрывоопасного этиленовоздушного облака в помещении могут быть электроприборы (в случае их несоответствия категории и группе взрывоопасной среды), открытый огонь (при проведении огневых работ), искры от удара (при различных ремонтных работах) и разряд атмосферного электричества.
Пожарно-техническим обследованием отделения компрессии установлено, что пять электросветильников марки ВЗГ в разное время в течение 120, 100, 80, 126 и 135 ч эксплуатировались с нарушением щелевой защиты.
Вероятность нахождения электросветильников в неисправном состоянии равна
Так как температура колбы электролампочки мощностью 150 Вт равна 350 °С, а температура самовоспламенения этилена 540 °С, следовательно, нагретая колба не может быть источником зажигания этиленовоздушной смеси.
Установлено, что за анализируемый период времени в помещении 6 раз проводились газосварочные работы по 6, 8, 10, 4, 3 и 5 ч каждая. Поэтому вероятность появления в помещении открытого огня будет равна
Так как температура пламени газовой горелки и время ее действия значительно превышают температуру воспламенения и время, необходимое для зажигания этиленовоздушной смеси, получаем, что
Ремонтные работы с применением искроопасного инструмента в помещении за анализируемый период времени не проводились.
Вычисляем вероятность появления в помещении разряда атмосферного электричества.
Помещение расположено в местности с предположительной грозовой деятельности 50 с
x год-1, поэтому п=6 км-2 x год-1. Отсюда, в соответствии с формулой (5) приложения 3 число ударов молнии в здание равноТогда вероятность прямого удара молнии будет равна
Вычисляем вероятность отказа исправной молниезащиты типа Б здания компрессорной по формуле (52) приложения 3
Таким образом, вероятность поражения здания молнией равна
Пожарно-техническим обследованием установлено, что защитное заземление, имеющееся в здании, находится в исправном состоянии, поэтому
Тогда
Учитывая параметры молнии получим
Откуда
Таким образом, вероятность взрыва этиленовоздушной смеси в объеме помещения будет равна:
Рассчитаем вероятность возникновения пожара в помещении компрессорной. Наблюдение за объектом позволило установить, что примерно 255 ч
x год-1 в помещении компрессорной, в нарушение правил пожарной безопасности, хранились разнообразные горючие материалы (ветошь, деревянные конструкции, древесные отходы и т.п.), не предусмотренные технологическим регламентом. Поэтому вероятность появления в помещении горючих веществ равнаОткуда вероятность образования в цехе пожароопасной среды равна
Из зафиксированных тепловых источников, которые могут появиться в цехе, источником зажигания для твердых горючих веществ является только открытый огонь и разряды атмосферного электричества. Поэтому вероятность возникновения в отделении компрессии пожара равна
Таким образом, вероятность того, что в отделении компрессии произойдет взрыв либо в самом компрессоре, либо в объеме цеха составит значение
.
Вероятность того, что в компрессорной возникнет пожар или взрыв, равна:
1.3. Заключение
Вероятность возникновения в компрессорной взрыва равна 2,7
x 10-7 в год, что соответствует одному взрыву в год в 3703704 аналогичных зданиях, а вероятность возникновения в нем или взрыва, или пожара равна 1,9 x 10-4 в год, т. е. один пожар или взрыв в год в 5263 аналогичных помещениях.2. Рассчитать вероятность возникновения пожара в резервуаре РВС 20000 НПС “торголи”
В качестве пожароопасного объекта взят резервуар с нефтью объемом 20000 м3. Расчет ведется для нормальной эксплуатации технически исправного резервуара.
Средняя рабочая температура нефти Т=311 К. Нижний и верхний температурные пределы воспламенения нефти равны: Тн.п.в=249 К, Тв.п.в=265 К. Количество оборотов резервуара в год Поб=24 год-1. Время существования горючей среды в резервуаре при откачке за один оборот резервуара t отк=10 ч (исключая длительный простой). Радиус резервуара РВС=2000 R=22,81 м. Высота резервуара Hр==11,9 м. Число ударов молний п=6 км-2
x год-1. На резервуаре имеется молниезащита типа Б, поэтому b б=0,95.Число искроопасных операций при ручном измерении уровня Nз.у=1100 год-1. Вероятность штиля (скорость ветра и
x 1 м x с-1), Qш (u x 1)=0,12. Число включений электрозадвижек Nэ.з=40 x год-1. Число искроопасных опера ций при проведении техобслуживания резервуара NТ.О=24 год-1. Нижний и верхний концентрационные пределы воспламенения нефтяных паров Си.к.п.в=0,02% (по объему), Си.к.п.в=0,1% (по объему). Производительность, операции наполнения g=0,56 i3 x c-1. Рабочая концентрация паров в резервуаре С=0,4% (по объему). Продолжительность выброса богатой смеси Тбог==5 ч.Так как на нефтепроводах
средняя рабочая температура жидкости (нефти) выше среднемесячной
температуры воздуха, то за расчетную температуру
поверхностного слоя нефти принимаем
.
Из условия задачи видно,
что >
в.к.п.в,
поэтому при неподвижном уровне нефти
вероятность образования горючей cмеси внутри резервуара равна нулю QВН (ГС)=0, а при
откачке нефти равна
.
Таким образом вероятность образования горючей среды внутри резервуара в течение года будет равна
.
Вычислим число попадании молнии в резервуар то формуле (5.1) приложения 3
.
Тогда вероятность прямого удара молнии в резервуар в течение года, вычисленная по формуле (49) приложения 3, равна
.
Вычислим вероятность отказа молниезащиты в течение года при исправности молниеотвода по формуле (52) приложения 3.
Таким образом, вероятность поражения молнией резервуара, в соответствии с формулой (48) приложения 3, равна
Обследованием установлено,
что имеющееся на резервуаре защитное заземление
находится в исправном состоянии, поэтому
вероятность вторичного воздействия молнии на
резервуар и заноса в него высокого потенциала
равна нулю
Появление фрикционных искр в резервуаре возможно только при проведении искроопасных ручных операций при измерении уровня и отборе проб. Поэтому вероятность Qр(ТИ3) в соответствии с формулами (49 и 55) приложения 3 равна
В этой формуле Q(ОП) = 1,52
x 10-3 — вероятность ошибки оператора, выполняющего операции измерения уровня.Таким образом, вероятность появления в резервуаре какого-либо теплового источника в соответствии с приложением 3 равна
Полагая, что энергия и время существования этих источников достаточны для воспламенения горючей среды, т. е Qр(B) = l из приложения 3 получим Qр (ИЗ/ГС) = 5,4
x 10-3.Тогда вероятность возникновения пожара внутри резервуара в соответствии с формулой (38) приложения 3, равна
Из условия задачи следует, что рабочая концентрация паров в резервуаре выше верхнего концентрационного предела воспламенения, т. е, в резервуаре при неподвижном слое нефти находится негорючая среда. При наполнении резервуара нефтью в его окрестности образуется горючая среда, вероятность выброса которой можно вычислить по формуле (42) приложения 3
Во время тихой погоды (скорость ветра меньше 1 м
x с-1) около резервуара образуется взрывоопасная зона, вероятность появления которой равнаДиаметр этой взрывоопасной зоны равен
Определим число ударов молнии во взрывоопасную зону
Тогда вероятность прямого удара молнии в данную зону равна
Так как вероятность отказа молниезащиты Qр(t1) = 5
x 10-2, то вероятность поражения молнией взрывоопасной зоны равнаОткуда Qв.з(ТИ1)=7
x 10-3.Вероятность появления около резервуара фрикционных искр равна
Наряду с фрикционными искрами в окрестностях резервуара возможно появление электрических искр замыкания и размыкания контактов электрозадвижек. Учитывая соответствие пополнения электрозадвижек категории и группе взрывоопасной смеси, вероятность появления электрических искр вычислим по формулам (49 и 54) приложения 3.
Таким образом, вероятность появления около резервуара какого-либо теплового источника в соответствии с приложением 3 составит значение
Полагая, что энергия и время существования этих источников достаточны для зажигания горючей среды, из формулы (49) приложения 3 получим при Qв=1
Тогда вероятность возникновения взрыва в окрестностях резервуара в соответствии с формулой (39) приложения 3 равна
Откуда вероятность возникновения в зоне резервуара либо пожара, либо взрыва составит значение
2.3. Заключение
Вероятность возникновения в зоне резервуара пожара или взрыва составляет 2,0
x 10-4, что соответствует одному пожару или взрыву в год в массиве из 3448 резервуаров, работающих в условиях, аналогичных расчетному.3. Определить вероятность воздействия ОФП на людей при пожаре в проектируемой 15-этажной гостинице при различных вариантах системы противопожарной защиты.
3.1. Данные для расчета
В здании предполагается устройство вентиляционной системы противодымной защиты (ПДЗ) с вероятностью эффективного срабатывания R1=0,95 и системы оповещения людей о пожаре(ОЛП) с вероятностью эффективного срабатывания R2=0,95. Продолжительность пребывания отдельного человека в объекте в среднем 18 ч
x сут-1 независимо от времени года. Статистическая вероятность возникновения пожара в аналогичных объектах в год равна 4 x 10-4. В качестве расчетной ситуации принимаем случай возникновения пожара на первом этаже. Этаж здания рассматриваем как одно помещение. Ширина поэтажного коридора 1,5 м, расстояние от наиболее удаленного помещения этажа до выхода в лестничную клетку 40 м, через один выход эвакуируются 50 человек, ширина выхода 1,21 i. Нормативную вероятность Qнв принимаем равной 1 x 10-6, вероятность Рдв, равной 1 x 10-3.3.2. Расчет
Оценку уровня безопасности определяем для людей, находящихся на 15-м этаже гостиницы (наиболее удаленном от выхода в безопасную зону) при наличии систем ПДЗ и ОЛП. Так как здание оборудовано вентиляционной системой ПДЗ, его лестничные клетки считаем незадымляемыми. Вероятность Qв вычисляем по формуле (33) приложения 2
.
Учитывая, что отдельный
человек находится в гостинице 18 ч, то вероятность
его присутствия в здании при пожаре принимаем
равной отношению . С учетом этого
окончательно значение будет равно 0,75
.
Вероятность Qв вычисляем по формуле (3) приложения 2.
Поскольку Qв>Qнв, то условие безопасности для людей по формуле (2) приложения 2 на этаже пожара не отвечает требуемому, — и, следовательно, в рассматриваемом объекте не выполняется при отсутствии системы оповещения.
4. Определить категорию и класс взрывоопасной зоны помещения, в котором размещается технологический процесс с использованием ацетона.
4.1. Данные для расчета
Ацетон находится в аппарате с максимальным объемом заполнения Vаи, равным 0,07 м3, и в центре помещения над уровнем пола. Длина L1 напорного и обводящего трубопроводов диаметром d 0,05. м равна соответственно 3 и 10м. Производительность q насоса 0,01 м
x мин-1. Отключение насоса автоматическое. Объем Vл помещения составляет 10000 м3 (48х24х8,7). Основные строительные конструкции здания железобетонные, и предельно допустимый прирост давленияСкорость воздушного потока и в помещении при работе аварийной вентиляции равна 1,0 м
x с-1. Температура ацетона равна температуре воздуха и составляет 293 К. Плотность r ацетона 792 кг x м-3.4.2. Расчет
Объем ацетона м3, вышедшего из трубопроводов, составляет
где t — время автоматического отключения насоса, равное 2 мин.
Объем поступившего ацетона, м3, в помещение
.
Площадь разлива ацетона принимаем равной 116 м2.
Скорость испарения (Wисп), кг
x с-1? м, равнаМасса паров ацетона (Мп), кг, образующихся при аварийном разливе равна
Следовательно, принимаем, что весь разлившийся ацетон, кг, за время аварийной ситуации, равное 3600 с, испарится в объем помещения, т. е.
Стехиометрическая концентрация паров ацетона при b =4 равна
Концентрация насыщенных паров получается равной
Отношение Сн/(1,9? Сст)>1, следовательно, принимаем Z=0,3.
Свободный объем помещения, м3
Время испарения, ч, составит
.
Коэффициент получается равным
Максимально возможная масса ацетона, кг
Поскольку mп(91,9 кг)<mmax(249,8 кг), то помещение в целом относится к невзрывопожароопасным.
Расстояния Xн.к.п.в, Yн.к.п.в и Zн.к.п.в составляют при уровне значимости Q=5
x 10-2где
4.3. Заключение
Таким образом, взрывобезопасные расстояния составляют соответственно Rб>7,85 м и Zб>3 м.
Взрывоопасная зона с размерами Rб? 7,85 м и Zб? 3 м относится к классу В-1а. Схематически взрывоопасная зона изображена на черт. 9.
1 - помещение; 2 - аппарат; 3 - взрывоопасная зона
Черт. 9
5. Определить категорию производства, в котором находится участок обработки зерна и циклон для определения зерновой пыли в системе вентиляции.
5.1. Данные для расчета
Масса зерновой пыли, скапливающейся в циклоне mа, составляет 20000 г. Производительность циклона q по пыли составляет 100 г
x мин-1. Время t автоматического отключения циклона не более 2 мин. Свободный объем помещения Vсв, равен 10000 м3. Остальные исходные данные: mx=500 г; b 1=1; п=14; Kу=0,6; Кл=1; Кв.з=1; Q=16700 кДж x кг-1; То=300 К; Ср=1,0 кДж x кг-1; То=300 К; Cр=l,0 кДж x кг-1; r в=1,29 кг x м-3; Рдоп=25 кПа; Ро=101 кПа; Z=1,0.5.2. Расчет
Масса отложившейся пыли к моменту очередной уборки г, составит
Расчетная масса пыли, г, участвующей в образовании взрывоопасной смеси, равна
Максимально возможную массу горючей пыли, кг, вычисляем по формуле
5.3. Заключение
Значение mр не превышает mmax, следовательно, помещение не относится к взрывопожароопасным.
6. Рассчитать вероятность возникновения пожара от емкостного пускорегулирующего аппарата (ПРА) для люминесцентных ламп на W=40 Вт и U=220 В.
6.1. Данные для расчета приведены в табл. 13.
В результате испытаний получено:
Таблица 13
Температура оболочки в наиболее нагретом месте при работе в аномальных режимах, К |
|||
Параметр |
Длительный пусковой режим |
Режим с короткозамкнутым конденсатором |
Длительный пусковой режим с короткозамкнутым конденсатором |
Т |
375 |
380 |
430 |
s |
6,80 |
5,16 |
7,38 |
6.2. Расчет
Расчет возникновения пожара от ПРА ведем по приложению 5, ПРА является составной частью изделия с наличием вокруг него горючего материала (компаунд, клеммная колодка); произведение вероятностей Q(ПР)хQ(НЗ) обозначим через Q(аi); тогда из приложения 5 можно записать
где Qа — нормативная вероятность возникновения пожара при воспламенении аппарата, равная 10-6;
Q(B) — вероятность воспламенения аппарата или выброса из него пламени при температуре поверхности ПРА (в наиболее нагретом месте), равной или превышающей критическую;
Q(ai) — вероятность работы аппарата в i-м (пожароопасном) режиме;
Qi(Ti) — вероятность достижения поверхностью аппарата (в наиболее нагретом месте) критической (пожароопасной) температуры, которая равна температуре воспламенения (самовоспламенения) изоляционного материала;
k — число пожароопасных аномальных режимов работы, характерное для конкретного исполнения ПРА.
Для оценки пожарной опасности проводим испытание на десяти образцах ПРА. За температуру в наиболее нагретом месте принимаем среднее арифметическое значение температур в испытаниях
Дополнительно определяет среднее квадратическое отклонение
Вероятность (Q(Ti)) вычисляем по формуле (156) приложения 5
где Q i — безразмерный параметр, значение которого выбирается по табличным данным, в зависимости от безразмерного параметра a i, в распределении Стьюдента.
Вычисляем (a i) по формуле
где Tк — критическая температура.
Значение (Тк) применительно для ПРА вычисляем по формуле
где Tдj, Tвj — температура ;j-го аппарата (в наиболее нагретом месте), соответственно, при появлении первого дыма и при “выходе” аппарата из строя (прекращении тока в цепи).
Значение Q(B) вычисляем по формуле (155) приложения 5 при п=10.
Значение критической температуры (Tк) составило 442,1 К, при этом из десяти испытуемых аппаратов у двух был зафиксирован выброс пламени (m=1 Q(B)=0,36).
Результаты расчета указаны в табл. 14.
Таблица 14
Параметр |
Длительный пусковой режим (i=1) |
Режим с короткозамкнутым конденсатором (i=2) |
Длительный пусковой режим с короткозамкнутым конденсатором (i=3) |
0,06 |
0,1 |
0,006 |
|
30,9 |
37,8 |
4,967 |
|
1 |
1 |
0,99967 |
|
0 |
0 |
0,00033 |
6.3. Заключение
Таким образом, расчетная вероятность возникновения пожара от ПРА равна Qп=l (0,06
x 0+0,l x 0+0,006 x 0,00033) x 0,36=7,1 x 10-7, что меньше 1 x 10-6,. т. е. ПРА пожаробезопасен.Автоматизированная информационно-справочная система требований пожарной безопасности (в соответствии с нормами строительного проектирования) “Экспертиза” |